How Will Murata’s Soil Sensors Change Agriculture? Smarter Watering Management for Greenhouse Horticulture, Fruit Growing, and Outdoor Cultivation

This article is a revised version of a sponsored article published in the AGRI JOURNAL life and business media for young agricultural managers and new farmers on October 6, 2022.

 

Isn’t one of the ideals of agriculture to maintain sustainability with a good balance between cultural development, the environment, the economy, living things, and communities? Murata Manufacturing (hereinafter “Murata”) has started the mass production of high-performance soil sensors that contribute to the realization of that ideal.

Murata Contributes to Solving Issues in Agricultural Production with Our High-Performance Soil Sensors

Some greenhouse horticulture producers constantly measure the amount of water content, fertilizer concentration, and other data in culture media by using soil sensors throughout the cropping season. The producers then appropriately manage those values. They do that with the aim of increasing high yields, maintaining high quality, and improving efficiency.

The time may come when such advanced cultivation management is also applied to outdoor vegetable cultivation, fruit growing, and other areas in addition to greenhouse horticulture. Murata started mass-producing high-performance soil sensors that will contribute to such smart agriculture in the future in May 2022. One of the reasons for developing this product was our desire to solve issues faced by the Japanese agricultural industry.

A diverse range of crops are produced in Japan—from wetland rice to outdoor vegetables and root vegetables and from greenhouse horticulture to fruit growing. However, the farmers who support Japanese agriculture are aging and decreasing in number at the same time. Moreover, the pace of those changes is advancing rapidly. This is calling into question the sustainability of Japanese agriculture. Smart agriculture is attracting attention as one measure against that. Smart agriculture is a new form of agriculture. Farmers utilize robotic technologies and information and communication technologies (ICT) to achieve labor saving, greater precision, and high-quality production. In addition, salt damage is becoming more serious due to climate change from a global perspective. This means measures against salt damage have become a pressing issue. We have developed this product, which makes it possible to monitor the condition of farmland over a long period of time, to offer some help toward solving such social issues.

Soil Sensor in the Earliest Days Developed to Support Reconstruction from the Great East Japan Earthquake

There are already many soil sensors on the market. Yoshiyuki Oba in the Development & Marketing Section, Product Engineering Department, Functional Device Division, now tells us about the background to the development of soil sensors by Murata among those products.

“We originally developed this soil sensor as part of a project to support reconstruction from the Great East Japan Earthquake. The tsunami led to flooding of paddy and other fields in coastal areas in the Tohoku region, which caused salt damage. We started developing this product from a desire on the part of Murata to contribute to reconstruction from that damage.
Furthermore, we have evolved it as a sensor that contributes to solving environmental problems caused by climate change around the world and that adapts to smart agriculture. The functions of sensors are important. However, we have placed particular importance on the added value that this creates.”

SOURCE: Murata Blog

x Brown

About The Author

thumbnail TrustedParts x B